Authenticated Encryption

Andrey Bogdanov

Technical University of Denmark

June 2, 2014

Scope

- Main focus on modes of operation for block ciphers
- Permutation-based designs briefly mentioned

Outline

- Block ciphers
- Basic modes of operation
- AE and AEAD
- Nonce-based AE modes and features
- Nonce-based AE: Implementation properties
- Nonce-free AE modes and features
- Nonce-free AE: Implementation properties
- Permutation-based AE

Outline

- Block ciphers
- Basic modes of operation
- AE and AEAD
- Nonce-based AE modes and features
- Nonce-based AE: Implementation properties
- Nonce-free AE modes and features
- Nonce-free AE: Implementation properties
- Permutation-based AE

Block ciphers

Block cipher

A block cipher with n-bit block and k-bit key is a subset of 2^k permutations among all 2^n ! permutations on n bits.

Some standard block ciphers

PRESENT

Visualization of a round transform

Why block ciphers?

- Most basic security primitive in nearly all security solutions,
 e.g. used for constructing
 - stream ciphers,
 - hash functions,
 - message authentication codes,
 - authenticated encryption algorithms,
 - entropy extractors, ...
- Probably the best understood cryptographic primitives
- U.S. symmetric-key encryption standards and recommendations have block ciphers at their core: DES, AES

Modes of operation

- The block cipher itself only encrypts one block of data
 - Standard and efficient block ciphers such as AES
- To encrypt data that is not exactly one block
 - Switch a block cipher into a mode of operation

Electronic Code Book (ECB)

Electronic Codebook (ECB) mode encryption

Electronic Code Book (ECB)

- Good performance and parallelizability
- But retains patterns and repetitions
- Limited number of applications

Cipher Block Chaining (CBC)

Cipher Block Chaining (CBC) mode encryption

- Serial encryption
- Parallel decryption
- Needs both cipher enc and dec for both enc and dec
- A MAC can be constructed from CBC: CBC-MAC

Counter mode (CTR)

Counter (CTR) mode encryption

- Essentially relies on IV
- Parallel encryption and decryption
- Needs only cipher enc for both enc and dec

Outline

- Block ciphers
- Basic modes of operation
- AE and AEAD
- Nonce-based AE modes and features
- Nonce-based AE: Implementation properties
- Nonce-free AE modes and features
- Nonce-free AE: Implementation properties
- Permutation-based AE

OK, what about authenticity?

OK, what about authenticity?

Authenticity

- Is cryptography about secrets?
 - Yes, but not only!
 - Encryption alone is not enough
 - Authenticity is essential

Authenticated Encryption (AE)

Authenticated Encryption with Associated Data (AEAD)

AE vs AEAD

Authenticated encryption

AE: (P,K) -> (C,T) where T is authentication tag

Authenticated encryption with associated data

AEAD: (A,P,K) -> (A,C,T) where A is associated data transmitted in plaintext

- What is the use of associated data?
 - Routing information
 - Packet headers

- CAESAR = Competition for Authenticated Encryption: Security, Applicability, and Robustness
- Following NIST AES, EU NESSIE, EU eStream, and NIST SHA-3
- Submissions were due: March 2014
- Co-funded by US NIST
- Need for efficient authenticated encryption

- 57 submissions from all around the world
- serious flaws identified for 11 submissions
- less serious issues for 5 more submissions
- 8 submission withdrawn, fully or partly

- 57 submissions from all around the world
- serious flaws identified for 11 submissions
- less serious issues for 5 more submissions
- 8 submission withdrawn, fully or partly
- names of 2 submissions are Pokemon names!

- Jan 2015: Announcement of round-2 candidates
- Dec 2015: Announcement of round-3 candidates
- Dec 2016: Announcement of finalists
- Dec 2017: Announcement of final portfolio

Some features of AE modes

- Nonce-based vs nonce-free
- Parallel vs serial
- One BC call vs two BC calls per block
- One-pass vs two-pass
- Online vs offline
- Deterministic vs common prefix
- Many more

AE: some modes and standards

	Algorithms	Standards
1999	IAPCBC	
2000	IACBC, AE	
2001	OCB, AEAD	
2002	CCM	802.11
2003		
2004	GCM	802.1
2005		IPsec
2006		FC-SP, 1619.1, LTO-4
2007		
2008		RFC5116
2009	SIV	TLSv1.2, IKE, XMLsec, SSH
2010		
2011	OCBv3	
2012	CBC+HMAC	SRTP, JOSE

Outline

- Block ciphers
- Basic modes of operation
- AE and AEAD
- Nonce-based AE modes and features
- Nonce-based AE: Implementation properties
- Nonce-free AE modes and features
- Nonce-free AE: Implementation properties
- Permutation-based AE

GCM: Galois/Counter Mode

CCM: Counter with CBC-MAC

[Whiting, Housley, Ferguson 2002] NIST SP 800-38C RFC 3610, 4309, 5084

CCM Mode

OCB: Offset Codebook Mode

[RBBK01] [BR02] [R02] [R04] [KR11]

+

- 1 AES-128 call per block
- well parallelizable
- associated data
- online scheme

- enc/dec different
- state 4x128 bits
- (patents)

OTR: Offset Two Round

SUM = M[2] \oplus M[4] \oplus ... \oplus M[m-2] \oplus Z \oplus C[m] 10* if m even

= M[2] \oplus M[4] \oplus ... \oplus M[m-1] \oplus M[m]10* if m odd

- 1 AES-128 call per block
- well parallelizable
- only BC enc is needed for both OTR enc & dec

- enc/dec different
- Feistel limits parallelizability

Outline

- Block ciphers
- Basic modes of operation
- AE and AEAD
- Nonce-based AE modes and features
- Nonce-based AE: Implementation properties
- Nonce-free AE modes and features
- Nonce-free AE: Implementation properties
- Permutation-based AE

Nonce-based AE

- OCB by Rogaway et al. is hard to beat in software!
 - parallelizable (extremely fast with AES instructions)
 - virtually single cipher call per block
 - small overhead (especially with stretching)

Nonce-based AE in software

AES-NI Sandy Bridge, cycles per byte

Software implementation of OCB

High-speed data links: up to 100 Gbit/s AE needed (McGrew)

Standard Sandy Bridge desktop CPUs with 6 cores and AES-NI @ 3.1 GHz available

Thus, for 1KByte as average size of a message

OCB3: 132.8 Gbit/s

Do we really need it faster?

NOTE:

State-of-the-art 16-lane PCI Express 3.0 slot has a capacity of about 120 Gbit/s

Nonce-based AE in lightweight hardware

Design	Area	Net per 128-bit block	Overhead per message	Power
	(GE)	(clock cycles)	(clock cycles)	(uW)
AES-ECB	2,435	226	-	87.84
AES-OCB2	4,563	226	452	165.21
AES-OCB2 e/d	5,783	226	452	201.32
ASC-1 A	4,793	370	904	169.11
ASC-1 A e/d	4,964	370	904	193.71
ASC-1 B	5,517	235	904	199.02
ASC-1 B e/d	5,632	235	904	207.13
AES-CCM	3,472	452	-	128.31
AES-CCM e/d	3,765	452	-	162.15

STMicroelectronics 65 nm CMOS LP-HVT, Synopsis 2009.06, 20 MHz

- Block ciphers
- Basic modes of operation
- AE and AEAD
- Nonce-based AE modes and features
- Nonce-based AE: Implementation properties
- Nonce-free AE modes and features
- Nonce-free AE: Implementation properties
- Permutation-based AE

Nonce-free vs nonce-based

- Nonce N = number used once, freshness
- Nice but might be difficult to enforce sometimes

Good news: Nonce can be "just" a counter!

Nonce-free AE(AD)

- There are two flavours
 - Single-pass
 - Double-pass
- Double-pass, SIV [RS06] as a good example
 - Processes data twice
 - Might be inefficient/prohibitive in some applications
 - Same plaintext means same ciphertext and tag
- Single-pass, MCoE-G [FFLW12] as a good example
 - Process the data one time both for auth and enc
 - Inherent limitation: common prefix in P translates to common prefix in C

SIV: Nonce-free two-pass

H = header, or AD

F = MAC

X = P

E = enc, e.g. AES-CTR

MCoE-G: Nonce-free one-pass

- nonce-free
- one-pass
- common-prefix preservation

MCoE-X: how things can go wrong

- serial
- 1 BC call + key schedule per block
- nonce-free
- one-pass
- common-prefix preservation

MCoE-X:

Key recovery in birthday complexity

A simple attack (key collision):

- Choose an arbitrary value a.
- 2 For ℓ values k compute b = E(k, a) and save the pair (b, k) in a list L.
- 3 Choose an arbitrary x and set $M_1 = x$ and $M_2 = a$ such that m = x || a and ask for the ciphertext/tag pair (c, T) with $c = C_1 || C_2$.
- Check if C₂ is in the list L to get K.
 - If C_2 is in the list L then a candidate for the key is found. Compute $K = k \oplus M_1 \oplus C_1$,
 - Else go back to step 3.

After repeating steps 3-4 about $2^n/\ell$ times one expects to find the correct key with complexity of about $2^n/\ell + \ell$.

POET: Nonce-free one-pass

- 1 BC call + 2 universal hash function" per block (3 BC calls per block)
- nonce-misuse resistant
- one-pass
- common-prefix preservation
- "pipelinable" but rather serial

Nonce-misuse resistant: Going parallel

- McOE-G and POET are single-pass but (practically) serial
- SIV is two-pass

Is it possible to build a nonce-free AEAD that is one-pass and parallel?

COPA:

Parallelizable single-pass nonce-free AE

Associated data

Message (COPE)

- well parallelizable
- two BC calls per block
- nonce-free
- one-pass
- common-prefix preservation

Collaboration with Elena Andreeva, Atul Luykx, Bart Mennink, Elmar Tischhauser, Kan Yasuda

- Block ciphers
- Basic modes of operation
- AE and AEAD
- Nonce-based AE modes and features
- Nonce-based AE: Implementation properties
- Nonce-free AE modes and features
- Nonce-free AE: Implementation properties
- Permutation-based AE

Nonce-free single-pass AE in software

- Block ciphers
- Basic modes of operation
- AE and AEAD
- Nonce-based AE modes and features
- Nonce-based AE: Implementation properties
- Nonce-free AE modes and features
- Nonce-free AE: Implementation properties
- Permutation-based AE

- Block ciphers
- Basic modes of operation
- AE and AEAD
- Nonce-based AE modes and features
- Nonce-based AE: Implementation properties
- Nonce-free AE modes and features
- Nonce-free AE: Implementation properties
- Permutation-based AE

SpongeWrap: Nonce- and permutation-based AE

- Permutation-based
- Requires nonce
- Essentially serial but there are parallelization tricks (see e.g. Keyak and NORX)
- Strong potential for lightweight

APE:

Nonce-free permutation-based AE

Associated data:

- Permutation-based
- Nonce misuse resistant
- Serial
- Lightweight
- Dec backwards
- A mode for a sponge construction such as Photon or Spongent

Message processing and tag generation:

Collaboration with Elena Andreeva, Atul Luykx, Bart Mennink, Nicky Mouha, Kan Yasuda

Wrap-up

Block-cipher based AE:

- OCB if reliable nonce and SW (patent!)
- SIV if no nonce, perfect security is needed, and twopass is possible
- COPA if no nonce and single-pass required

Permutation-based AE:

- SpongeWrap if nonce is reliable
- APE if no nonce and decrypting backwards is possible
- (Both rather lightweight in HW)